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ABSTRACT This paper will present recent advances in algorithms 
developed to achieve accurate on-line ID. These 
algorithms use and reference the MCRLS ID algorithm 
[1]. Initial mass-property ID algorithms as developed for 
the X-38 v.201 spacecraft and Mini-AERCam [2] are 
updated and extended here. Experimental results 
validating a subset of these algorithms on the MIT 
SPHERES spacecraft in zero-g aircraft flight tests are 
presented in [3]. For brevity, the reader is referred to 
those publications for supporting material. The above-
mentioned spacecraft and the NASA Ames air-bearing 
simulator are shown below. 

Spacecraft control, state estimation, and fault-
detection-and-isolation systems are affected by unknown 
variations in the vehicle mass and thruster properties. It is 
often difficult to accurately measure inertia terms on the 
ground, and mass properties can change on-orbit as fuel is 
expended, the configuration changes, or payloads are 
added or removed. Multiple concurrent recursive least 
squares identification (MCRLS ID) algorithms using 
gyros and accelerometers to monitor vehicle motions are 
used here to identify on-line the vehicle inertia, inverse-
inertia, center of mass, thruster force, and total mass. 
Originally developed for application to the X-38 v.201 
spacecraft, the algorithms have been extended and 
implemented on the MIT SPHERES experimental 
spacecraft, which are now awaiting launch to the ISS for 
space-based testing. The MCRLS ID algorithm is 
summarized briefly, and advances in the specific ID 
algorithms are presented. An accurate and efficient 
filtering method for estimating angular acceleration from 
raw gyro signals is presented. 
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1.  Introduction 

Due to the very small disturbance forces and torques 
present on spacecraft on orbit and in free space, accurate 
knowledge of their mass and thruster properties is 
important from a control and estimation standpoint. 
Fortunately, these features also make it feasible to 
identify these properties on-line using measurements of 
vehicle motions. 

1.1  Related research 
The use of linear least squares regression for the 

identification of unknown system parameters has been 
used and studied extensively, as by [4] and [5]. However, 
the requirement that a regression equation be formed with 
the unknown parameters linearly represented limits its 
direct applicability to many important problems, 
including the spacecraft application presented here. Spacecraft mass properties can be calibrated with 

limited accuracy during ground testing, and change 
further once on orbit due to expulsion of fuel mass, 
reconfiguration (of antennae, etc.), and for servicing 
robotic spacecraft, potentially variable payloads. An 
important difficulty encountered is that the unknown 
parameters do not appear linearly in the governing 
physical equations of motion. Accurate ID of mass 
properties has been studied extensively, but those 
methods have limitations as compared to the present 
research, and have not yet been implemented and tested 
on an actual spacecraft. 

Tanygin and Williams [6] and Bergmann [7] have 
separately developed advanced estimation algorithms for 
mass-property ID. The capabilities and limitations are 
discussed in [2]. Significant limitations that the present 
research effort has sought to overcome are the increased 
computational complexity, rigid assumptions on thruster 
and dynamic properties, and lack of flexibility in adding 
or removing properties from the list of identified 
parameters. 



Wilson and Rock developed an ID method based on 
exponentially weighted RLS using accelerometer and 
angular rate sensors [8] [9]. Driven by the requirements of 
real-time on-line implementation as part of a 
reconfigurable fault-tolerant control system, the problem 
was reformulated to ID the accelerations resulting from 
thruster firings. By combining the mass and thruster 
properties, the regression function was linearized. 

The MCRLS algorithm enables the application of 
linear recursive least squares (RLS) ID to certain 
nonlinear parameter estimation problems. Originally 
developed to address this spacecraft mass-property ID 
problem, it allows the nonlinear ID problem to be 
segmented into linear parts [1]. So the ID algorithms 
presented here (for inertia, thruster strength, etc.), may be 
considered without regard to the variability present in the 
other unknown parameters (an approximation). 

2.  Acceleration estimation 
The ID algorithms operate by analyzing vehicle 

motions, during both coasting and thruster-firing periods. 
ID accuracy is dependent on the accuracy of the velocity 
and acceleration estimates. This section summarizes the 
algorithms developed to estimate angular rate, angular 
acceleration, and translational acceleration from the gyros 
and accelerometers (if available). These algorithms have 
been developed, tuned, implemented, and tested on the 
MIT SPHERES spacecraft, so they address the common 
issues of vibration disturbances and efficiency 
requirements for real-time code implementation. 

Raw sensor (gyro or accelerometer) data is sampled 
at 1 kHz, so there are 100 samples per 100-ms control 
update period. Thrusters are held open or closed for the 
entire 100 ms, and ID processing is done based on each 
100-ms cycle. 

2.1 Angular acceleration and rate from gyros 
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This figure, using data from the SPHERES taken 

during flight tests aboard the NASA 0-g KC-135A in 
Nov. 2003, shows an example of the ringing induced 
whenever a thruster is opened or closed. In this case, the 
end of an 800-ms firing period occurs at 63.0 seconds. 

Prior to this, the signal is fairly clean, with a negative 
slope due to the applied torque. A latency of a few 
milliseconds follows 63.0 seconds, at which point the 
thrusters close for a 200 ms coasting period.  

This 338 Hz ringing is close to the 500 Hz Nyquist 
frequency (a single-pole 300 Hz analog pre-filter is used, 
which does not do much for this ringing), with the near-
aliasing resulting in the pattern shown. The ringing is 
handled very effectively, as seen by the relatively 
consistent acceleration estimates in the previous plot. The 
segments defined by the on-board-estimated rates and 
accelerations are overlaid on the raw gyro data to 
demonstrate the estimator’s ability to filter out the gyro 
ringing while providing accurate and high bandwidth 
estimation. 

The segment of raw gyro readings covering the 
control segment of interest (during which thrust should be 
constant) is low-pass filtered with a forward-backward 
zero-phase smoothing filter to remove high frequency 
structural vibrations and vibration-induced ringing of the 
gyro’s tuning fork. A line is then fit using a linear least 
squares regression to the smoothed result, with the slope 
of the line providing the angular acceleration estimate, 
and the mean offset providing the angular rate estimate. 
Since it used only samples taken during the thruster firing 
cycle of interest, the estimate is thus properly correlated 
with the thruster firing that caused it. No reliance on 
thruster properties was made in the estimate. 

While the above describes the algorithmic 
functionality, due to the requirements of the real-time 
processing system, it is desirable to implement this 
derivative filter using as little code memory, processor 
cycles, and software development time as possible. An 
approach was developed that takes advantage of the fact 
that both low-pass filtering and least-squares line fitting 
act as linear operations on the data, meaning that the 
combination of the two is also linear. This allows the two-
step procedure to be implemented as a single vector 
multiplication of a vector of filter coefficients with the 
data segment. The vector of filter coefficients is 
determined through a process whereby each point, one at 
a time, is set to one (with the rest zero) and the two-step 
filter process output then equals the value of the 
corresponding coefficient. This implementation approach 
has the additional benefit of allowing filter parameters to 
be tuned off-line in MATLAB, and requiring no 
adjustment to the real-time code other than to load a 
different vector of MATLAB-generated filter coefficients. 

2.2 Translational acceleration from accelerometers 
Translational acceleration estimation is simpler, since 

the sensors measure acceleration directly (vs. requiring 
differentiation), but complicated by the fact that 
correction for angular motions is required. The first step 
performs a vector-multiply averaging operation (re-using 
the code from the angular motion estimation, with 
different filter coefficients), returning the translational 
acceleration at the accelerometers. 



Since the accelerometers can not be located exactly at 
the point at which acceleration measurement is desired 
(e.g., the center of mass or the geometric center), 
centripetal and angular accelerations will cause the 
accelerometers to return measurements that are a 
superposition of three effects: 
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1. Translational acceleration of the reference point. 
2. Centripetal acceleration proportional to the 

angular rate and the distance of each 
accelerometer’s effective center of mass for 
omega, rω , from the reference point. 

3. Tangential acceleration proportional to the 
angular acceleration and the distance of each 
accelerometer’s effective center of mass for 
alpha, rα , from the reference point. 

If the accelerometer proof mass were a point mass, 
and the suspension (typically a pendulum) were mass-
less, then rω  and rα  would be equal to the proof mass 
location. Equation 1 shows the correction of the 
acceleration measured at the accelerometer, , to 

acceleration at point c , , based on angular 

acceleration, 

ˆaa
ˆca

α , mean angular rate, 0ω , and the segment 
duration, τ . The final term is an exact correction for the 
fact that ω  varies linearly over the segment, resulting in 
a known distortion in 0 0( )rωω ω× × 1. Equation 1 must 
be calculated for each of the 3 accelerometers since they 
are at different locations. 

2

0 0 12
ˆ ˆ ( ) (c aa a r r r )α ω

τα ω ω α α= − × − × × − × × ω

)

(1) 

where ω  is a 3-by-1 vector containing the angular 
velocity of the body-fixed frame with respect to an 
inertial reference frame; I  is a 3-by-3 matrix containing 
the spacecraft inertia tensor (or dyadic, or matrix), 
measured about the true center of mass;  is a 3-by-  
matrix containing x-y-z location of each thruster in the 
body frame;  is the number of thrusters;  is a 3-by-

 matrix containing unit vectors indicating the direction 
of thrust in the body frame; the  cross product is 
taken column-by-column;  is a scalar containing 
thruster magnitude scale factor applied to all thrusters and 
includes effects of blowdown and the reduction in thrust 
when multiple thrusters are fired;  is a -by- n  
diagonal matrix containing nominal strength of each 
thruster at full tank pressure; 
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estimated, and error variants given here) are -by-  
diagonal matrices containing constant off-nominal 
strength of each thruster at full tank pressure, 

;  is a -by-  diagonal 
matrix containing pulse-to-pulse strength variations of 
each thruster; T  is a n -by-1 vector of 1’s and 0’s 
containing effective values for which thrusters fire at time 
step , accounting for transient effects; 

N
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τ  is a 3-by-
1 vector containing the sum of all torques on the vehicle 
resulting from other sources (drag, gravity gradient, 
separately modeled known thruster anomalies, CMG, 
RWA, and other calculable dynamic effects, etc.); bodyx  
is a 3-by-1 vector containing vehicle translational 
acceleration, measured in the body frame; m  is a scalar 
containing total vehicle mass; and  is a 3-by-1 
vector containing the net force on the vehicle through the 
center of mass, with the body superscript indicating 
measurement in the body frame. 

bo
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3. Spacecraft mass- and thruster-property ID 
This section summarizes the algorithms used for on-

line ID of center of mass, inverse inertia, and inertia, 
using rotational measurements only, as would commonly 
be available with gyros. Angular acceleration is required 
as a minimum, and the use of angular rate as well allows 
accounting for the gyroscopic term, (Iω ω× , in the 
governing equations. Thruster strength ID can be 
performed using rotational measurements alone, or with 
the additional use of translational acceleration 
measurements. By using MCRLS, all that is required for 
each set of parameters is to put it in regression form. The 
inertial measurements used (as estimated in Section 2) are 
ω , ω , and bodyx . 

Equation 2 contains all of the parameters we would 
like to identify, including CM location (contained in ), 
inertia (and its inverse), and . Unfortunately, the 
parameters multiply one another, and cannot all be 
manipulated into the desired linear regression form, 

L
biasF

Ax b≅ . The CM location, inverse-inertia, inertia, mass, 
and thruster strength will be identified individually by 
concurrently running RLS IDs according to the MCRLS 
ID approach. Note that depending on the application, not 
all of these values will be uncertain enough or critical 
enough to warrant ID.  

3.1  Equations of motion, nomenclature 
The rotational and translational equations of motion 

(EOM) for thruster controlled spacecraft can be written 
as: 

                                                           
1 This term becomes important for longer sample periods, 
but for the SPHERES, it is negligible and not calculated. 



Î  and 1Î −

1ˆ

 are symmetric, so instead of 9 free 
parameters in each, there are only 6 in each. The 
identifications are designed to directly identify these 6 
parameters. I −  will not exactly equal the inverse of Î . 

3.2  MCRLS 
Per the MCRLS algorithm, the IDs are initialized 

with the best prior parameter estimates (e.g., the nominal 
values). The respective estimate error covariance matrices 
are set according to the confidence in the initial nominal 
values. Then the RLS updates include weighting 
according to the sensor error covariance matrices. At each 
RLS update, a given ID will use the most recent estimates 
for other parameters being ID’ed (for example, CM ID 
would use the most recent estimates for inertia and 
thruster bias). The overall approach may be extended to 
other parameters in the governing equations (for example, 
the thruster directions) if they have sufficient variability 
and impact so as to justify ID. 

3.3  ID of deviation from nominal 
There is a component of the vehicle mass properties 

that can be calculated fairly well:  the change in mass as 
fuel is depleted. The effect of this on the change in 
nominal mass properties is calculated and is referred to as 
burn-time-integration (BTI). For this reason, the mass ID 
is designed to ID the difference between true and nominal 
mass properties, for example,  rather than C . So the 
known part of the change is incorporated exactly and 
immediately, and the ID continues to ID the unknown 
deviation of the parameters from nominal. Inaccuracy in 
the BTI will be partially accounted for by the ID. 
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As shown in this figure, the center of mass, C , 
determines the origin of the body frame, and thereby 
determines the value of , which contains the locations 
of each thruster in the body frame. Similarly, 

L
C∆ , the 

difference between actual and nominal values of C  
determines .  is the value that will be identified 

here.  is assumed to be known perfectly;  is 
assumed to be known perfectly, including continual 
updates based on BTI;  can then be calculated 

directly using these; C , and therefore  and  also, is 

the true quantity which cannot be known perfectly; 
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the identified quantity, leading directly to  and . 
Similarly for other mass properties: 
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3.4  Variables common to multiple IDs 
The rotational and translational EOM can be re-

written after defining four 3-by-1 vectors to be used later, 
, c , , and , where:  can be thought of as the 

nominal torque about the nominal CM;  is the nominal 

force on the vehicle due to thrusters;  is the torque 

resulting from the CM being off-nominal; and  is the 
accelerometer rotational correction term, correcting to the 
nominal CM. These four variables are defined as follows: 
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The rotational and translational EOM are given as: 
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Following the MCRLS method described earlier, the 
EOM will be manipulated into forms that enable the 
required IDs, individually. In the following sections, the 
resulting values of the A , x , and b  variables from the 
general regression form ( ) are listed for each 
individual ID. Unfortunately, due to the need for brevity, 
only the end results of the algebraic manipulations are 
presented. 
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3.5 CM ID using gyros 
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The identified value for  is then added to the 
nominal center of mass, to give the center of mass 
estimate: 

ˆ
C∆
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3.6 CM ID using accelerometers  
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3.7 Inverse-inertia ID using gyros 
The regression form equation for inverse-inertia ID 

using gyros, where the gyroscopic term is treated as a 
disturbance is: 
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Now treating the gyroscopic term as significant: 
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Following updates during coasting periods, normalize 
ˆ

I∆  so Î  does not change; otherwise during coasting, 

the solution would converge to  since that solves 
Equation 13 exactly (with T  and 

ˆ 0I =
0k = ˆ 0disturbτ = , the 

right side of Equation 13 is zero).  
By treating the gyroscopic term as a disturbance, we 

do not learn anything from it; we only try to keep it from 
negatively impacting the ID. This means that information 
is only present when thrusters are firing, and no ID 
updates occur during coasting periods. Depending on the 
spacecraft inertia properties and typical angular rates, this 
term may be sufficiently significant as compared to noise 
and disturbances to warrant direct treatment in the ID, as 
shown later. The magnitude of the gyroscopic term is 
greater for asymmetric spacecraft, and for high angular 
rates about more than one principal axis. 

This is the preferred approach for identification of 
inertia properties since it is the only one of the three to 
directly address the gyroscopic term, and can therefore be 
updated during coasting rotations. However, if the 
spacecraft symmetry and typical angular rates make the 
gyroscopic term negligible, there is no advantage over the 
other approaches. 

3.9 Thruster-magnitude ID 
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 (23) 3.8 Inertia ID using gyros 
The regression form equation for inertia-matrix ID 

using gyros only, where the gyroscopic term is treated as 
a disturbance is: 
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3.10  Total mass ID 
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3.11 RLS updating 
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